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Abstract. For translationally periodic double-wall carbon nanotubes stable configurations and full symme-
try groups are determined. Using this, the phonon dispersions and eigenvectors are calculated and assigned
by the complete set of conserved quantum numbers. In particular, the modes corresponding to the relative
coaxial motions of the rigid layers are studied in the context of low inter-wall interaction.

PACS. 63.22.+m Phonons or vibrational states in low-dimensional structures and nanoscale materials –
61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 78.30.Na Fullerenes
and related materials

Since the discovery by Iijima [1], carbon nanotubes (CNs),
have been investigated intensively. Due to their numerous
potential applications, the achievement of the high yield
production (at low cost) with well controlled chirality, di-
ameter and number of layers is a goal of many research
groups. Recently, double-walled CNs (DWCNs) have been
generated by coalescence of “bucky-peapods” encapsu-
lated into single-walled CNs [2] and a path to large scale
synthesis has been reported [3]. Also, DWCNs produc-
tion by chemical vapor deposition have been achieved [4].
Resonant Raman measurements have been used to de-
termine the inner and outer diameter of the DWCNs by
identifying the radial breathing modes and high energy
modes [5]. Breathing-like phonon modes of DWCNs have
been studied theoretically [6]. The symmetry breaking ar-
guments are used to predict the low interaction between
the walls [7,8], the effect which has been verified numeri-
cally [9,10] and experimentally [11].

A far as we know, no systematic theoretical study of
the DWCNs stable configurations, symmetry and lattice
dynamics has been reported yet. Here we find the stable
configurations and symmetry groups of the translation-
ally periodic, i.e. commensurate DWCNs (CDWCNs) and
calculate their phonon dispersions and atomic displace-
ments. Then we turn to the inspection of the low energy
optic modes, which describe the relative coaxial motion
of almost rigid layers, giving an additional evidence of the
inter-wall interaction. The calculations were performed by
means of the code POLSym (E) [12]: based on the line (rod
or monoperiodic) groups symmetry [13], it is maximally
efficient for studies of the systems periodical in one direc-
tion, including CDWCNs.
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Symmetry group of SWCN [7] is a line group L;
it is T r

q (a)Dn for chiral (C) and T 1
2n(a)Dnd for achi-

ral (zig-zag, Z and armchair, A) tubes. The orders of
the principle axes of the line and its isogonal group
are n = GCD(n1, n2) and q, a is translational period and r
is helicity parameter of the screw axis T r

q (a) generated
by (Cr

q |na/q) (especially, T 0
n(a) = T (a) is pure trans-

lational group). The roto-translational operations (rota-
tions around the tube axis and screw axis) comprise the
first family subgroup [13] L(1) = T r

q (a)Cn of L. Addi-
tional parities are U -axis (rotations for 180◦ around the
axis perpendicular to the tube), and in achiral tubes only,
horizontal and vertical mirror and glide planes. The spa-
tial inversion transforms the tube (n1, n2) into (n2, n1):
a C tube with right chirality (n1 > n2 > 0, chiral
angle θ ∈ (0, 30◦)) becomes the tube with left chiral-
ity θ ∈ (0,−30◦), while achiral tubes remain identical.
Left and right counterparts have either the same (e.g.
vibrational) or directly related properties (e.g. opposite
rotation of the polarization of light). Their symmetry pa-
rameters q, n and a are the same, while the helicity pa-
rameters satisfy rright + rleft = q.

CDWCN W@W′ is a pair of coaxial single-layer tubes
with commensurate translational periods: W = (n1, n2)
is nested within W′ = (n′

1, n
′
2). Spatial inversion relates

the right-right CDWCN (n1, n2)@(n′
1, n

′
2) to the left-

left one (n2, n1)@(n′
2, n

′
1). Thus, if both layers are chi-

ral, together with the right-right tube the right-left one
(n1, n2)@(n′

2, n
′
1) should be considered independently. We

studied 318 CDWCNs selected as follows: all of 1280 right
SWCNs with diameters 2.8 Å≤ D ≤ 50 Å are taken as the
inner wall W, while the outer wall W′ may be any SWCN
with [1] D′ = D + ∆, 6.48 Å≤ ∆ ≤ 7.28 Å. There
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Table 1. Series of CDWCNs with colinear chiral vectors and
their right-left counterparts. The tubes of the series in Column
1 have the considered diameters (outer wall 9.6 Å≤ D ≤ 50 Å)
for the values of n given in the Column 4; the values in brackets
should be omitted. Corresponding line and isogonal group are
in the columns 2 and 3. The translational periods are given
with the length unit a0 = 2.46 Å.

CDWCN ray Line Group Isogonal n

(1, 0)n@(n + 9) T (
√

3)D1d D1d
4,5,...,62

(6,9,12,...,60)

T (
√

3)D3d D3d
6,9,12,...,60
(9,18,...54)

T (
√

3)D9d D9d 18, 27 . . . , 63

Tc(
√

3)S18 9

(1, 1)n@(5 + n) T (1)D1d D1d
2,3,...,36 (5,10,
15,20,25,30,35)

T (1)D5d D5d 10, 15, . . . , 35

Tc(1)S10 5

(3,2)n@(n+2)
(2,3)n@(n+2)

T 1
2 (

√
57)D1 D2 1, 3, . . . , 13

T (
√

57)D2 2, 4, . . . , 14

(4,1)n@(n+2)
(1,4)n@(n+2)

T 1
2 (

√
7)D1 D2

1,3,...,13
1,3,...,11

T (
√

7)D2
2,4,...,12

2,4,...,12 (6)

T 3
14(

√
7)D1 D14

−
13

T 13
14 (

√
7)D2

−
6

(7,3)n@(n+1)
(3,7)n@(n+1)

T (
√

237)D1 D1 1, 2, . . . , 7

(8,1)n@(n+1)
(1,8)n@(n+1)

T (
√

219)D1 D1 1, 2, . . . , 7

are 42236 different such right-right DWCNs. However,
only 240 among them are commensurate. Both walls are
chiral in 78 of them, and their right-left counterparts are to
be added, giving a sample of 318 commensurate DWCNs.
It is interesting that out of firstly selected 1280 SWCNs
only 207 (out of which 98 are chiral) appear as the lay-
ers of CDWCNs. More than half of all CDWCNs, namely
178 tubes, are with the colinear chiral vectors n(n̂1, n̂2)
and n′(n̂1, n̂2) (n̂i = ni/n = n′

i/n′, i = 1, 2) of the in-
gredient layers. These series of tubes we denote shortly
as (n̂1, n̂2)n@n′ and (n̂2, n̂1)n@n′ for the right-left coun-
terpart. Within this class there are 60 zig-zag ZZn =
(1, 0)n@(n+9), and 35 armchair, AAn = (1, 1)n@(n+5),
Table 1.

Symmetry transformations of DWCN leave both lay-
ers invariant. Thus, DWCN symmetry group is the in-
tersection of the groups of the layers. In contrast to the
roto-translational symmetries, parities depend on the rel-
ative layers positions, which are parameterized by two co-
ordinates. Let x- and x′-axis pass through the centers of
carbon hexagons of W and W′ (layers z- and z′-axis coin-
cide). The angle of rotation Φ and length of translation Z
(around and along the tube axis, respectively), which are
to be performed on x to match x′, completely parameter-
ize relative walls position.

Roto-translational symmetries of (n1, n2)@(n′
1, n

′
2)

form line group [7]: L
(1)
WW′ = T R

Q (A)CN . It is generated
by CN and the helical generator (CR

Q |NA/Q), with the
parameters determined by the layers’ ones:

N = GCD(n, n′), A = â′a = âa′, (1)

Q = N
√

q̃q̃′/τ, R = (râτ + sq̃)Q/q.

Here, q̃ = q/n, q̃′ = q′/n′, τ =
√

q̃q̃′/
GCD( râ′n′−r′ân

N ,
√

q̃q̃′), s = τ(râq′ − r′â′q)(n̂φ(n̂′) −
1)/n′q̃q̃′ (φ is Euler function), â′ =

√
q̃′/GCD(q̃, q̃′),

â =
√

q̃/GCD(q̃, q̃′). Any integer R + jQ/N(modQ) (j =
1, . . . , N) may be equivalently used; we chose for R the
unique one which is nonnegative, less than Q and co-prime
to it.

The parities pertain to the DWCN symmetry group
only for the special positions of the constituent SWCNs,
where their U -axes and/or mirror planes coincide. The
topological argument [14] predicts that the extremes, in-
cluding the stable configuration, of the interaction po-
tential V (Φ, Z) = 1

2

∑
v(rα − rα′) (summation over all

atoms α of W and α′ of W′) are in the most symmetrical
positions. As there are several physically different highly
symmetric special positions, the stable configurations are
singled out numerically. The calculations are performed
using the inter-atomic potential v of the Lenard-Jones
type [15]. It turns out that V (Φ, Z) is not very sensi-
tive to small variations of the inter-layer distance around
minimum at approximately 3.44 Å. Thus the influence of
the radial relaxation of the walls is too small to affect
equilibrium positions: the topologically allowed stable po-
sitions form a discrete set, and a weak relaxation can-
not switch between them. Thus, we assume the layers of
the CDWCN retain (isolated) single-wall tube geometry.
This determines the interlayer distance 3.44 Å± 0.2 Å, as
explained before.

The unique global minimum of V (Φ, Z) is found, in
accordance with the topological argument, in the configu-
ration with the highest symmetry. Whenever at least one
layer of CDWCN is chiral, the stable configuration is at
(Φ, Z) = (0, 0), with coinciding x- and x′-axis, becoming
common U -axis (in addition to L(1)). As chiral wall has no
mirror/glide planes, this configuration is maximally sym-
metric. With both achiral walls the only CDWCNs are
series of zig-zag, ZZn, and armchair AAn tubes. For ZZ9

and AA5 the minimum is at (Φ, Z) = (π/2Q, a/4) for ZZ9

and AA5, while in all other cases (Φ, Z) = (0, a/4). The
straightforward inspection (see Fig. 1) shows that besides
the common U axis and horizontal roto-reflection plane,
there appear glide (only in ZZ9 and AA5) or vertical mir-
ror planes. We define the DWCN coordinate system tak-
ing common U -axis and tube axis as the x- and z-axes.
In ZZn and AAn tubes, U -axis is perpendicular to the
mirror/glide plane (thus it is yz-plane).

Altogether, previously found roto-translational sub-
groups and the parities in the stable configurations form
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Fig. 1. Stable configuration of ZZ3 and AA5. On the unfolded double-layer (atoms are plotted in the ϕ-z coordinates) horizontal
axis is at

⊙
, and mirror planes, vertical σv and σh horizontal (glide σ′

v and roto-reflection σ′
h) planes are at solid (dashed) lines.

Black and gray plots correspond to inner and outer shell.

the following full symmetry groups of CDWCNs:

LC = T R
Q (A)DN = LQP 2, LQP 22 (LG family 5);

(2)
LAA5 = Tc(a0)S10 = L5̄c (LG family10); (3)

LZZ9 = Tc(
√

3a0)S18 = L9̄c (LG family10); (4)

LZZn = LAAn = T (A)DNd = LN̄m (LG family9). (5)

Here, LC denotes the groups of CDWCNs with a chi-
ral wall, and Tc is yz-glide plane generated by σ′

v =
(σvy|A/2). The group parameters Q, R, N and A are
given in Table 1. In the international notation, P is di-
visible by N , and P = N(Rφ(Q/N)−1 (mod Q/N)). As a
consequence of symmetry, the conserved quantum num-
bers are quasi momentum k, angular momentum m, and
parities. They are used to label irreducible representations
in the form kΓ Π

m: U -parity is given by Π = ±, while Γ is A
(or B) for the one-dimensional representations even (odd)
with respect to vertical mirror plane, and E and G for
two- and four-dimensional representations. The isogonal
point groups of LC and LZZ and LAA are:

PC = DQ, PZZ = PAA = DNd. (6)

While in SWCN the principle axis of the isogonal point
groups is of high order, in the considered 318 CDWCNs
it takes the values Q = 1, 2, 3, 5, 9, 14 (in 187, 88, 21, 9,
9 and 4 cases respectively). Whenever at least one wall is
achiral, the resulting roto-translational group is symmor-
phic. Since the isogonal group of the achiral pairs is DNd

with odd N , it contains spatial inversion which excludes
simultaneous Raman and infrared (IR) activity.

The simulation package POLSym (E) fully implements
the modified group projector technique [16] for the line
groups, enabling substantial reduction of the eigen prob-
lem of the dynamical matrix D. For each |µ|-dimensional
irreducible representation Dµ only 3|µ|Y -dimensional sub-
matrix is extracted from D and diagonalized. Here, Y is
the number of orbits of CDWCN, i.e. the minimal num-
ber of atoms that generate CDWCN tube by symme-
try transformations. Skipping details on the orbits and

Fig. 2. Phonon dispersions of (5,5) (left), (10,10) (right) and
CDWCN AA5 (middle). The thickness of the bands corre-
sponds to the quantum number m (modulo range [−2,2] of m
in AA5), to enable comparison.

atomic coordinates, we note only that the CDWCNs sym-
metry is reduced with respect to the SWCNs one. The
symmetry breaking [8] is manifested as the increased,
tube dependent number of orbits, in contrast to the sin-
gle orbit SWCNs. In view of this, the highly symmet-
ric configurations, e.g. AA5 or ZZ9 with 3 orbits each
(in general, AA5n has 2n + 1 and ZZ9n for n > 1 has
4(n + 1) orbits), or (54,0)@(45,27), (30,30)@(55,10) are
particularly convenient in calculations. On the contrary,
there are many-orbit CDWCNs like (7,3)7@8 with more
than 2000 orbits, for which the calculations are much ro-
bust then for SWCNs [18].

The dynamical matrix D is constructed as follows: For
atoms α and β laying in different layers, the correspond-
ing 3 × 3 sub-matrix Dα

β is Hessian ∂2v(rα−rβ)

∂xα
i ∂xβ

j

of the

Lenard-Jones potential [15] (it gives the best matching
with the measured Raman spectra). For the pair of atoms
of the same layer Dα

β is built up by use of the graphite force
constants [17]; these are adjusted to the cylindrical geom-
etry [18] dynamically (to reproduce forces changed due
to the folding) and kinematically (to accommodate the
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Fig. 3. Phonon density of states. Left: entire frequency range.
Right: Enlarged low frequency region, with solid and dashed
line denoting LRL and TWRL mode peaks.

rotation sum rule). The inter-layer interaction is much
weaker than the intra-layer one.

Due to the dominant intra-layer interaction, the
CDWCN phonon energies are basically the perturbed en-
ergies of the isolated SWCN constituents (Fig. 2). This is
helpful in the case of two modes of the isolated walls with
the same quantum numbers, energetically separated from
the other modes of the same type. Such a pair of the modes
yields perturbatively a pair of CDWCN’s modes. For in-
stance, the pair of the radial breathing modes, one totally
symmetric mode from each layer, gives two (out-of-phase
and in-phase) breathing like modes of CDWCNs [6] (our
results on these modes agree with the valence force fields
ones). Of course, observed mixing with the other modes is
neglected within this simple scheme.

There are four acoustic modes, longitudinal (LA),
twisting (TWA) and two-fold transversal (TA). The cor-
responding branches are linear in k; their slope is close
to that of SWCNs, giving the sound velocities: vTA =
9.54 km/s, vLA = 20.64 km/s and vTC = 15.18 km/s.
Variations between different CDWCNs is within 1%.

The pair of LA modes of the walls are mixed to give
one LA mode of CDWCN and the mode in which the walls
move along the z-axis in opposite direction. This longitu-
dinal vibration of the rigid layers will be denoted as LRL.
Analogously, the twisting modes of both walls are mixed to
give TWA and TWRL modes, in which rigid layers rotate
in and out of phase. The acoustic and the corresponding
rigid layers modes are assigned by the same line group
irreducible representation: LA and LRL by 0A

−
0 , TWA

and TWRL by and 0B
−
0 (representations A2u and A2g

of DQd) for tubes with both achiral walls, and all by 0A
−
0

(for Q being 1, 2 and greater than 2 this is the representa-
tion B, B1 and A2 of the isogonal group DQ, respectively)
for other CDWCNs. Hence, TRL and LRL modes are IR
active, while TWRL is IR active for tubes with at least
one chiral wall. In these cases they give intensive spectral

Fig. 4. Calculated and fitted by (7) frequencies of LRL and
TWRL modes a functions of the tube diameter.

lines since both TRL and TWRL modes correspond to
singularities [19] in the phonon density of states (DOS),
Figure 3.

In all these modes the interaction of the walls couples
the layers acoustic modes of the same type, raising the
frequencies from the exact zero (in SWCN) to approxi-
mately 40 cm−1, Figure 4. Perturbation theory approxi-
mately relates frequencies and diameters:

ω(D) = ωRL
DWCN

√
(D + δRL)(D − ∆DWCN

2 )
(D − ∆DWCN)D

· (7)

Here, ∆ is the difference of the walls diameters (∆ZZ =
7 Å and ∆AA = 6.78 Å), while ωRL

DWCN and δRL
DWCN

are the fitting constant depending on the coupling: δLRL =
−4 Å, δTWRL = 4/3 Å and ωLRL

ZZ = 34.7 cm−1, ωTWRL
ZZ =

33.8 cm−1, ωLRL
AA = 37.4 cm−1, ωTWRL

AA = 36 cm−1.

These results nicely agree with the predictions and
measurements of the telescoping [8–11] of the walls
(RL frequencies found with Van der Waals poten-
tial [10] are slightly higher for AA tubes, and lower for
ZZ ones). The conclusions on the IR activity of LRL and
TWRL modes and calculated frequencies may be com-
bined in order to get a simple experimental test of the
effect. Further, characterization of the samples of double-
wall tubes is enabled; unlike only diameter dependent
breathing-like Raman active modes, the proposed IR mea-
surements of RL modes are chirality sensitive, as well. In
the large diameter limit LRL and TWRL modes become
the degenerate lowest A point mode of graphite [20] (be-
low 40 cm−1), with the adjacent graphene layers vibrat-
ing out of phase, rigidly and in plane. This limit differs
for AAn and ZZn tubes, due to the different stacking of
the layers (Fig. 1). The limiting TRL and TWRL frequen-
cies ωRL

DWCN in (7) are not exactly degenerate due to the
approximations incorporated in (7) and restricted fitting
data base.
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(1993)

14. H. Abud, G. Sartori, Ann. Phys. 150, 307 (1983)
15. R. Saito et al., Chem. Phys. Lett. 348, 187 (2001)
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